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ABSTRACT 

In many quality control settings, the product (process) under examination may have two or more correlated 

quality characteristics; hence, an appropriate approach is needed to simultaneously monitor all the quality 

characteristics. The Hotelling T2 control chart based on the usual sample mean vector and variance - 

covariance matrix performs poorly, especially when there are multiple out of control points in the multivariate 

data set. Several alternative methods have been proposed, this includes methods based on the minimum 

volume ellipsoid (MVE) and the minimum covariance determinant (MCD) among many other methods. 

These control charts are powerful in detecting a reasonable number of outlying data.in this paper we propose 

a modified Hotelling T2 control charts using the eigen-values obtained from scatter matrix/ variance-

covariance matrix of the multivariate data. The methods were used on a real-life data set. The studies show 

that this method outperforms the classical Hotelling T2 control charts and compete well with charts based on 

MVE and MCD for a small number of observations when the number of out of control points was increased 

 

KEYWORDS: Hotelling T2, Control charts, Outliers, eigen-value, quality Characteristics, Mean shift. 

 

1. INTRODUCTION 

Statistical Process Control (SPC) field is closely-related to univariate outlier detection methods. It looks 

into the cases where the univariable stream of measure represents a stochastic process. Control charts are 

the most popular tools and techniques used in Statistical Process Control (SPC) to monitor the quality 

characteristics of products and services in organizations and industries. In many of these industrial 

processes, it is frequently required to monitor several quality characteristics at the same time. Such quality 

characteristics may includes weight, degree of hardness, thickness, width and length of a certain type of 

tablets (Liu, 1995). For the fact that the quality characteristics of these products are clearly correlated, the 

separate univariate control charts for monitoring such quality characteristics may not be efficient in 

signaling out-of-control points and changes in the overall quality of the products, therefore, it is desirable 

to have a control charts that can measure and monitor these characteristics simultaneously, multivariate 

control charts are the most appropriate tools applicable in such situations (Alt, 1985). 
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A subtle approach towards monitoring and improving quality is the statistical process control (SPC) charts 

that aim at quality improvement through reduction of variation. It is one of the primary techniques used 

in the controlling of product quality. 

 

In many quality control settings, the product (process) under examination may have two or more correlated 

quality characteristics (variables); hence, an appropriate approach is needed to monitor all these 

characteristics simultaneously. This leads to the multivariate quality control problem, which is the subject 

of research by many quality control experts. As the objective of performing multivariate statistical process 

control is to monitor the process over time, in order to detect any unusual events that allow quality and 

process improvement, it is essential to track the cause of an out of control signal. However, as opposed to 

univariate control charts, the complexity of multivariate control charts and the cross-correlation among 

variables make the analysis of assignable causes of out-of-control signals difficult. This has been the basis 

for extensive research performed in the field of multivariate control chart since the 1940s, when Hotelling 

(1947) recognized that the quality of a product might depend on several correlated characteristics. 

 

Outliers can heavily influence the estimation of scatter matrix and subsequently the parameters or statistics 

that are needed to be derived from it. Therefore, a robust estimate of scatter matrix that would not be 

affected by outliers is required to obtain valid results (Hubert and Engelen, 2007).  

 

An outlier is an observation that deviates so much from other observations as to arouse suspicion that it 

was generated by different mechanism as defined in statistical quality control concepts (Hawkins, 1980).  

 

Because of the importance of multivariate control charts in monitoring at least two correlated quality 

characteristics and to detects and remove outlying variable (quality characteristics), this research proposed 

an alternative hotelling T2 control chart based on robust method of estimating location and scatter matrix 

and compared it efficiency with Hotelling T2 using classical, Minimum Volume Ellipsoid (MVE) and 

Minimum Covariance Determinant (MCD 

 

Material and methodology 

The classical estimators for μ and Σ are the empirical mean and covariance matrix respectively where 
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Both the empirical mean and variance-covariance are highly sensitive to outliers. 
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The Minimum Covariance Determinant (MCD) method developed by Rousseuw, (1984) is a highly robust 

estimator of multivariate location and scatter matrix. The empirical covariance matrix )(XCC   of X is 

the pxp matrix defined by; 
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Minimum volume ellipsoid (MVE) estimator is first proposed by Rousseeuw (1984), and it has been 

studied extensively for non-control charts settings and often used as multivariate outlier’s detector. This 

method involves, drawing a random sub-sample of (p + 1) different observation, indexed by 

 }.,...,{ 12,1  jpjjj xxxJ  

For this sub-sample, the mean and covariance matrix are computed as; 
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where 2

, pnc is a correction factor for small sample, and 2

5.0,p is the median of the chi-squared distribution 

with p degrees of freedom? The mahalanobis distances base on this estimator, proved to be very effective 

in detecting several outliers in a multivariate point cloud Rousseeuw and Zomeren (1990).  

 

Obafemi and Oyeyemi (2018) proposed a robust method of estimating the location (mean) and scatter 

(variance-covariance) matrix for a multivariate data set in the presence of outliers using eigen-values. 

 

Given y1,y2,…,yp for multivariate normal, i.e ),(~ pp NY where  is positive definite. The proposed 

method of estimating the parameter and  is focusing more on the eigen-values of variance 

covariance matrix.  Given a p-dimensional multivariate normal data Ypxm with m observation m

iiy
1 ,

 the 

interest here is to obtain subsets of m

iiy
1
of size k =p+1 that satisfy some criteria stated below: 

The minimum of the arithmetic mean of eigen-value; minimum of the harmonic mean of the eigen-value; 

and minimum of the Geometric mean of the Eigen-value obtained from the classical variance-covariance 
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matrix. 

A sample of size k from m is therefore drawn that will give 
m
pC 1 possible subsets of size p + 1. The 

variance-covariance matrix Σj is therefore estimated as .))((
1
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For each of the pxp matrix ,j  the eigen-values 
jpjj  ,...,, 21

  are obtained. For each set of eigen-values, 

the following are obtained; the Arithmetic mean (A), the harmonic mean (H) and the geometric mean (G) 

of the eigen-values, 

 

The objective here is to obtain data points in which the eigen-values of its variance-covariance matrix will 

satisfy at least two of the following criteria; Minimum Arithmetic mean (Amin); Minimum Harmonic mean 

(Hmin); and Minimum Geometric mean (Gmin), taking into consideration when the variance covariance 

matrix is from uncorrelated variables and also dependent variable (correlated variables). 

The resulting covariance matrix will be inflated or deflated to accommodate good data point

2
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The classical mean and variance-covariance matrix of the h points is the proposed robust estimate of the 

vector of means and scatter matrix given as; 
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hence the proposed Hotelling T2 is obtained with the following parameter 
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HOTELLING’S T2 CONTROL CHART 

The 2  statistic is used when a sample is drawn out of a population and the real population parameters 

are known. Ghare and Torgerson (1968) developed a bivariate control chart based on the 2  statistic. 

This control chart uses a graphical implementation with an elliptical in control region in the two-

dimensional XY plane.  A more general case of this control charts is the charts commonly referred to as 
2  control chart. This differs from Ghare and Torgerson’s control charts in two ways; first, the 2 control 
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chart is not limited to the bivariate case. Second, the implementation involves plotting 2  statistic over 

time and comparing the statistic to the determined critical value. This loses the separation of quality 

characteristic value that the bivariate method possesses. On the other hand, in the case where the 

covariance matrix is not known, then the Hotelling T2 control chart, Hotelling (1947) becomes appropriate. 

And the statistics is as shown in equation 1.0 below 

 

;𝑇2 = 𝑛(𝑋 − 𝑋̅)𝐼𝑆−1(𝑋 − 𝑋̅) ………………………………………. (1.0) 

 

The Hotelling T2 chart is analogous to the Shewart X-bar chart when parameters are unknown. The lower 

control limit for a T2 chart is zero (0) and the upper control limit is given by; 

 

𝑈𝐶𝐿 =  
𝑝(𝑚−1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1
𝑭𝛼,𝑝,𝑚𝑛−𝑚−𝑝+1,      LCL = 0, Where Fα, p, mn-m-p+1 represents the 100 (1-α) th percentile 

of the F-distribution with degree of freedom p and mn-m-p+1 Following Jeson et al. (2007) and Vargas 

(2003) a robust minimum volume ellipsoid (MVE) as alternative to Hottelling T2 statistics is defined as;    
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 and SMVE are the estimates of mean vector and 

scatter matrix obtained through MVE respectively. And for the robust minimum covariance determinant 

(MCD) an alternative to Hottelling T2 statistics is defined as;  
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)()(

_
1

_

MCDiMCD
T

MCDi XxSXx  
, where MCDX

_

 and SMCD are the estimates of mean vector and 

scatter matrix obtained through MCD location respectively. The statistical software R is used to calculate 

MVE and MCD estimates based on a genetic Algorithm. 

 

Determining the upper control limits for the control charts 

 The upper control limits were determined from 1000 simulation such that all the methods considered had 

overall false alarm probability of 0.05. The limits were obtained by generating 1000 data set for n=30 and 

p=2, The Hotelling T2 statistic, Ti
2 were computed for i = 1,2,,, n. The maximum value was recorded and 

the 95th percentile of the maximum value of Hotelling T2 for j = 1, 2,,,,1000 was taken to be the upper  

control limits for the control chart. The values obtained are 9.02, 16.29, 16.29 and 15.42 for the normally 

distributed variables for Classical, MCD, MVE and Proposed methods, respectively  

 

REAL LIFE DATA ILUSTRATION 

We consider Tablet NIR spectral data, (2011) source from http://www.idrc-

chambersburg.org/shootout_2002.htm. The data are spectra measured in the transmittance mode, of 460 

(row) pharmaceutical tablets, 650 columns; the first two variables of 30 samples were considered and were 

http://www.idrc-chambersburg.org/shootout_2002.htm
http://www.idrc-chambersburg.org/shootout_2002.htm
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reproduced. The two variables are used in the construction of Hotelling T2 control charts using the 

classical, the MCD, MVE and the proposed method the resulted charts are then compared. 

 

 The sample location and scattered matrix for the classical methods of table 1.0 are 













2698.3

2773.3
classicalX ,  










007781.0008058.0

008058.0009628.0
ClassicalS , 

 

The location and scattered matrix for the two existing robust method using R is given below: 

Location and scatter matrix for MCD 

 

 













2502.3

2538.3
MCDX ,   










003863.0003872.0

003872.0003885.0
MCDS  

 

Location and scatter matrix for MVE 













2502.3

2538.3
MVEX ,  










003863.0003872.0

003872.0003885.0
MVES  

 

The location and scattered matrix using the proposed robust method are given as follows; 













2559.3

2602.3
ProposedX , 










005006.0004958.0

004958.0004917.0
ProposedS  

 

Columns 4,5,6 of Tables 1.0 and 1.1 show the values of Hotelling T2 statistics, Ti
2

normal, Ti
2
MCD, Ti

2
MVE,  and 

Ti
2
proposed, based on the Classical, MCD, MVE and proposed methods respectively. 

 

Comparing the values obtained using the four statistics to their respective upper control limits which are 

9.02, 16.29, 16.29 and 15.42 for the Classical, MCD, MVE and the proposed methods respectively. It is 

observed that all the methods signal the 3rd and the 20th observation as out of control points. 

 

Finally, the observations 13, 25 and 30 are modified to (3.422, 3.4625), (3.4635, 3.5666) and (3.4333, 

3.3944) respectively making the number of outlier equal to 6 (20%). 

 

Table 1.1 gives the statistics of the multivariate control chats using the four different methods. The 

classical method is able to signal two observation as out-of-control while the other three methods; the 
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MCD, MVE and the proposed methods signal observations 3, 9, 13, 20, 25 and 30 as out of control which 

are all the outliers introduced. 

 

Table 1.0   Data set and Hotelling T2 statistic using, Classical, MCD, MVE and the proposed 

robust method’ when there are 2 (6.7%) outliers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s/n  x1 x2 Classical Mcd  Mve Proposed 

1  3.20889 3.20453 0.56479 6.35371  6.35371 3.61919 

2  3.29773 3.29764 0.09571 0.25329  0.25329 0.25799 

3  3.50000 3.46750 12.1864 20.7310  20.7310 17.2273 

4  3.21821 3.21233 0.40312 9.40144  9.40144 5.64698 

5  3.23531 3.23330 0.20071 1.93614  1.93614 1.09164 

6  3.26813 3.26277 0.04464 6.94894  6.94894 4.84454 

7  3.25249 3.25280 0.06737 0.16839  0.16839 0.10300 

8  3.13896 3.13358 2.5502 12.7421  12.7421 7.02711 

9  3.26651 3.25985 0.06543 10.2216  10.2216 7.11745 

10  3.27590 3.27253 0.02753 3.12863  3.12863 2.25511 

11  3.30798 3.30790 0.19005 0.39341  0.39341 0.39962 

12  3.16344 3.16169 1.78471 4.68587  4.68587 2.81861 

13  3.24515 3.23931 0.11851 8.47972  8.47972 5.48205 

14  3.21516 3.20936 0.44963 9.31775  9.31775 5.54898 

15  3.25219 3.24832 0.06565 4.19761  4.19761 2.69514 

16  3.33588 3.33082 0.77107 6.76416  6.76416 6.03419 

17  3.23255 3.23170 0.24541 1.00624  1.00624 0.55904 

18  3.26281 3.25498 0.08736 13.74195  13.74195 9.50382 

19  3.22073 3.21799 0.38389 3.22881  3.22881 1.80564 

20  3.50403 3.65556 27.28189 42.4731  42.4731 29.21725 

21  3.36075 3.36281 1.12098 2.41735  2.41735 1.57932 

22  3.12058 3.11619 3.36419 12.0089  12.0089 6.76837 

23  3.30934 3.30583 0.27433 3.48457  3.48457 2.98266 

24  3.32884 3.32623 0.54822 2.63227  2.63227 2.52697 

25  3.40090 3.3947 2.87449 11.9588  11.9588 11.6791 

26  3.27128 3.26555 0.05384 7.77759  7.77759 5.49070 

27  3.23634 3.23345 0.18544 2.99495  2.99495 1.75115 

28  3.31354 3.30856 0.37153 6.17724  6.17724 5.14467 

29  3.2983 3.29601 0.13190 1.76869  1.76869 1.50533 

30  3.17548 3.17632 1.49387 2.50627  2.50627 2.07431 
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The bold obsevations are the outlying values 

 

Hotelling T2 control charts using, Classical, MCD, MVE and the proposed robust method’ when there are 

2 (6.7%) outliers 

 
 

 

           Figure 1.0a: Classical control charts                Figure 1.0b: MCD control charts  

           with 2 (6.7%) outliers                   with 2 (6.7%) outliers 
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Figure 1.0c: MVE control charts with 2   Figure 1.0d: Proposed control charts with 2 

 (6.7%) outliers     6.7%) outliers  

 

Table 1.1 Data set and Hotelling T2 statistic using, Classical, MCD, MVE and the proposed robust 

method’ when there are 6 (20%) outliers 

s/n  x1 x2 Classical Mcd Mve Proposed 

1  3.20889 3.20453 0.75571 2.91142 2.91142 1.18736 

2  3.29773 3.29764 0.01107 5.24814 5.24814 4.49214 

3  3.5225 3.41335 7.77481 219.751 219.751 182.923 

4  3.21821 3.21233 0.61239 1.74652 1.74652 0.66373 

5  3.23531 3.2333 0.36679 4.18953 4.18953 2.63072 

6  3.26813 3.26277 0.08441 0.25506 0.25506 0.09424 

7  3.25249 3.2528 0.19385 7.84084 7.84084 5.93276 

8  3.13896 3.13358 2.43108 7.4816 7.4816 2.76751 

9  3.46000 3.57220 9.35292 258.1855 258.1855 224.208 

10  3.27590 3.27253 0.04467 1.05768 1.05768 0.75617 

11  3.30798 3.30790 0.02471 5.05811 5.05811 4.41573 

12  3.16344 3.16169 1.71346 9.98416 9.98416 5.02348 

13  3.42220 3.46250 2.69891 37.97514 37.97514 33.3535 

14  3.21516 3.20936 0.65971 1.89981 1.89981 0.71401 

15  3.25219 3.24832 0.19643 1.31389 1.31389 0.69981 
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16  3.33588 3.33082 0.14126 0.40476 0.40476 0.15291 

17  3.23255 3.23170 0.39904 6.41066 6.41066 4.32018 

18  3.26281 3.25498 0.12552 1.19052 1.19052 1.00893 

19  3.22073 3.21799 0.56153 3.93491 3.93491 2.13322 

20  3.50403 3.31560 15.3282 664.272 664.272 560.759 

21  3.36075 3.36281 0.43494 9.55558 9.55558 8.48215 

22  3.12058 3.11619 3.01583 11.02737 11.0273 3.93144 

23  3.30934 3.30583 0.01572 0.57012 0.57012 5.08003 

24  3.32884 3.32623 0.10184 1.31494 1.31494 1.14402 

25  3.4635 3.56660 8.55970 219.1118 219.111 190.541 

26  3.27128 3.26555 0.06807 0.19248 0.19248 0.0845 

27  3.23634 3.23345 0.35608 2.92295 2.92295 1.67394 

28  3.31354 3.30856 0.02459 0.07242 0.07242 0.03546 

29  3.2983 3.29601 0.00385 1.74877 1.74877 1.50015 

30  3.4333 3.39444 1.94277 24.28449 24.28449 19.6555 

 

The bold obsevations are the outlying values 

Hotelling T2 control charts using Classical, MCD, MVE and the proposed robust method’ when there are 

6 (20%) outliers 
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Figure 1.1a: Classical control charts     Figure 1.1a: Classical control charts 

with 6 (20%) outliers       with 6 (20%) outliers 

 
FINDINGS, CONCLUSION AND RECOMMENDATION  

All the methods were employed in obtaining the Hotelling’s T2 statistic which was  used in obtaining the 

control chart.  The basis for comparison was the proportions of times each chart correctly detect the 

presence of outliers by signaliing an out of control. 

 

The four methods were employed in the construction of Hotelling  T2 control charts using real life data, 

of spectra measured in the transmittance mode of pharmaceutical tablets with outliers introduced to the 

data arbitrarily at different magnitude. All the methods were able to signal an out of control when there 

were two outlying points in the multivariate data set. However, when the number of outlers was increased 

arbitrarily to 20%, the classical method only signaled two points as being out of control while the other 

three robust methods (MCD,MVE and Proposed) signaled all the outlying point (6 points) introduced. The 

points were above the upper control limits.  

 

The proposed hotelling T2 control charts compete favourably well with the two known robust hotelling T2 

(MVE and MCD) in detecting a shift in the mean by signaling an out of control when there are few or 

many outliers in the multivariate data set.  
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The proposed method performed better than the classical methods when there is higher percentage of 

outliers in the data set. In conclusion, the classical Hoteling T2  is only efficient when there are no or very 

few outliers in the multivariate data set while the other methods studied in this work are not only efficient 

when there are presence of few outliers in the data set but also efficient in the presence of multiple outliers. 

However, the proposed robust method performed well and very efficient in the two extreme cases. The 

efficiencies of the classical and the existing and widely used methods (MVE and MCD) of estimation are 

combined by the proposed robust method.  It follows that, if there is no information regarding the number 

of outlier in the multivariate data set as far as the analyst is concerned, it is recommended that the proposed 

robust method of Hotelling T2 conrol charts can be employed, since it works well with the other robust 

methods.   
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