ISSN: 2582-6271

Vol.1 No.5; 2020

SERIES COMPENSATION OF THE INTEGRATED NIGERIA'S 330KV TRANSMISSION GRID SYSTEM

Engr. Obi, Fortunatus Uche¹, Aghara, Jachimma² and Prof. Atuchukwu, John³

¹Dept of Electrical Electronics Engineering Technology, Metallurgical Training Institute, Onitsha ²Dept of Electrical Electronics Engineering, Nnamdi Azikiwe University, Awka ³Dept of Electrical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli

ABSTRACT

This study is on the Nigerian Power system which is complex and dynamic which is characterized by frequent faults and outages resulting to none steady supply of power to the teaming consumers. This scenario has great effect on the activities and mode of living of Nigerians. The work is aimed at bridging the gap of proposing further expansion of the grid system which is not only limited by huge sum of finance and difficulties in finding right –of- way for new lines but also which faces the challenges of fixed land and longtime of construction the data of the network was gotten and modeled into the network. The power flow Analysis was carried on the network comprising of 16 generators and 35 loads and 73 transmission lines using Power System Analysis Tool Box (PSAT) in MATLAB environment under the influence of Newton-Raphson Load Flow (NRLF) method. A base simulation of network was carried out and series compensation was carried out on the violated lines without contingencies. Series compensation using Thyristor Controlled series Compensator (TCSC) modeled with Newton-Raphson Load Flow (NRLF) method was adopted. The results obtained for base simulation revealed an MVA flow of 334.87 KVA and 212.73 MVA after compensation which showed a huge brought down of the MVA flow. The violated lines were Egbin – Ikeja West as 887MVA, Egbin –Benin 1514MVA

Ikeja West- Ikaro 4457 MVA, Ikaro- Egbin 1102 MVA, Benin- Onitsha-1026 MVA, Benin –Sapele 800MVA, Onitsha- Aloji 757 MVA, Ikotu Ekpene- Ugwuaji 768MVA. However, after compensation there were improvement in areas of violation on lower limit and reductions at higher limits as recorded again Egbin – Ikeja West as 289 MVA, Egbin –Benin 536 MVA,

Ikeja West- Ikaro 430 MVA, Ikaro- Egbin 375 MVA, Benin- Onitsha 629 MVA, Benin – Sapele 788MVA, Onitsha- Aloji 515 MVA, Ikotu Ekpene- Ugwuaji 431MVA.

KEYWORDS: Contingency, FACTS Controllers, Power flow study, Compensation,

1. INTRODUCTION

The Nigerian Power system is complex and dynamic, as a result of this it is characterized by frequent faults and outages resulting to none steady supply of power to the teaming consumers. This has great effect on the activities and mode of living of Nigerians (Obi, P.I and Offor, k. J, 2014).

ISSN: 2582-6271

Vol.1 No.5; 2020

The Integrated power system presently being understudied is made up of existing 51 buses (comprising of 16 Generating stations and 35 loads) and 73 transmission lines, many still under construction.

One of the most important factors in the operation of a power system is the desire to maintain system security. System security involves practices designed to keep the system operating with its range and limits when components fail (Nonyelu & Madueme, 2013).

Contingency simply means future event, occurrence or situation that can possibly arise but cannot be predicted with certainty which usually cause problems.

Contingency Analysis of a power system is a major activity in power system planning and operation.

These controllers are used in order to alleviate the power system problems of voltage limit violations, and disproportionate power flows and high active power loss; a solution method of incorporation of FACTS controllers into the existing power system (Adepoju, G.A, et al, 2011).

As the Nigerian Government is finalizing the eventual deregulation of her power system it is important that the investing companies be availed with information of the technical benefit derivable from the incorporation of FACTS controllers within the system (Adepoju, G. A., et al 2011)

A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power. It analyzes the power systems in normal steady-state operation (Low, S.H, 2013) Synchronous capacitor is a synchronous machine synchronized to the power grid and controlled to absorb or generate lagging VARs on the system. They are out door and are automatically controlled for startup, short down and on-line monitoring. When the machine is over excited, it acts as a shunt capacitor as it supplies lagging VARs to the system but when under-excited, it acts as a shunt coil (coil) as it absorbs reactive power to maintain terminal voltage.

2.0 MATERIALS AND METHOD

2.1 SERIES COMPENSATION (CAPACITIVE COMPENSATION)

This is the use of series capacitors which results into increase in maximum transmittable power, reduction in transmission angle and increase in virtual surge impedance loading. The thyristor controlled series compensator is used for the series compensation. It is made up of thyristor, reactor, and capacitor. The capacitive reactance of the controller is varied by varying the firing angle of the thyristor controlled reactor

ISSN: 2582-6271

Vol.1 No.5; 2020

(TCR) (Babar Noor, Mahammed Aamur Aman, MaURAD Ali, Sanaullah Ahmed and Fazal Wahab Kasam, 2018).

The Thyristor Control Series Conpensator (TCSC) is a capacitive reactance compensator consisting of a series capacitor bank shunted by a Thyristor-Controlled Reactor (TCR) in order to provide a continuously variable series capacitive reactance. It can play various roles in the operation and control of power systems, such as scheduling power flow, damping of power oscillations, decreasing unsymmetrical components, providing voltage support, limiting short-circuit currents, mitigating sub-synchronous resonance (SSR) and enhancing transient stability, (Zhou, X and Liang, J., 1999). The figure below shows the basic TCSC connection.

Figure1 Basic TCSC connection.

The load ability of the system is increased by decreasing the line effective reactance due to the capacitive reactance connected in series with the line reactance.

The thyristor is connected with a reactor that is in parallel to the capacitor along with transmission line. The figure below shows the individual components of the TCSC.

ISSN: 2582-6271

Vol.1 No.5; 2020

The lagging reactive power (inductive reactive power) and TCR current amplitude can be controlled continuously by varying the thyristor firing angle between 900 and 1800. The TCR firing angle can be fully changed within one cycle of the fundamental frequency, thus providing smooth and fast control of reactive power supplied to the system (Sankarbabu, P and Subrahmanyam, J.B.U, 2010)

The leading vars (capacitive reactive power) are usually provided by a different number of capacitor bank units. By combining these two components, fixed capacitor and continuously controlled reactor, as smooth variation in reactive power over the entire range can be achieved and the sum of the reactive power becomes linear. (Oltean, S.E, Dulau, M and Duka, A.V, 2012)

2.2 TSCS Power Flow Model

The TCSC power flow model presented in figure below is based on the simple concept of a variable series reactance, the value of which is adjusted automatically to set the power flow through the line to the specified value. The reactance value is determined efficiently by means of Newton's method. The changing reactance *TCSC*, shown in (a) and (b), represents the equivalent reactance of all the series-connected modules making up the TCSC, when operating in either the inductive or the capacitive regions (S. J. Helbing and G. G. Karady, 1994) and (E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Pérez, C. Angeles-Camacho, 2004)

For the variation of α from 0 to 90°, XL (α) varies from actual reactance (XL) to infinity. This controlled reactor is connected across the series capacitor, so that the variable capacitive reactance, as fig.3.6 is possible across the TCSC which modify the transmission line impedance. Effective TCSC reactance Xtcsc with respect to alpha (α) can be given the equations below. Kadia, J. V and Jamnani, J. G, 2012)

$$X_{L}(\alpha) = X_{L} \frac{\pi}{\pi - 2\alpha - Sin2\alpha}$$
 (1)

$$X_{C} = \frac{1}{2\pi FC}$$

$$X_{\text{TCSC}}(\alpha) = -X_{\text{C}} + C_1 \left(2(\pi - \alpha) + \text{Sin} \left(2(\pi - \alpha) \right) \right)$$
$$-C_{2\text{COS}}^2(\pi - \alpha) \text{w} \tan(w(\pi - \alpha)) - \tan(\pi\alpha))$$
(3)

(2)

$$C_1 = \underline{X_C + X_{LC}} \qquad (4)$$

ISSN: 2582-6271

Vol.1 No.5; 2020

$$C_{2} = \frac{4x^{2}LC}{XL\pi}$$
(5)
$$X_{LC} = \frac{X_{C}X_{L}}{X_{C}-X_{L}}$$
(6)
$$W = \sqrt{\frac{x_{C}}{x_{l}}}$$
(7)

W =

Table 1: showing various Regions of compensation

Range of firing angle (α)	Region
$90^0 \leq \alpha \leq \alpha_{\text{Lim}}$	Inductive Region
$\alpha_{\text{Lim}} \leq \alpha \leq \alpha C_{\text{im}}$	Resonance Region
$\alpha C_{\rm im} \le \alpha \le 180^{\circ}$	Capacitive Region

Figure 3: Resonance Condition of TCSC

Figure below shows the series compensation technique for both inductive and capacitive regions.

ISSN: 2582-6271

Vol.1 No.5; 2020

 $\tilde{V}_K \ = \ V_K <\!\! \theta_K \text{ and } \tilde{V}_m \ = V_m <\!\! \theta_m$

Using Newton- Raphson solution and linearizing the equations with respect to the series reactance and by solving iteratively

For the solution in the amount of active power flowing from bus k to bus m at a value Pkm reg then set of linearized power flow equations is

$$\begin{bmatrix} \Delta P_{K} \\ \partial Q_{K} \\ \partial$$

Where $\Delta P_{km} \;^{\rm XTCSC}$ = $P_{km} \;^{\rm reg}$ - $\Delta P_{km} \;^{\rm XTCSC}$ cal

is the active power flow mismatch for the series reactance

 ΔX_{TCSC} , is given by

$$\Delta X_{TCSC} = X^{(i)}_{TCSC} = X^{(i-1)}_{TCSC}$$

The incremental change in series reactance and P_{km} ^{XTCSC cal} the calculated power is given by eg. (3). The state viable X_{TCSC} of the series controller is updated at the end of each iterative step according to (Echa E, fuerte, C.R, Ambriz – perez, H and Angeles –camacho, C, 2004)

Thus
$$X^{(i)}_{TCSC} = X^{(i-1)}_{TCSC} + X_{TCSC} + X_{TCSC}$$

X_{TCSC}

2.4 Modeling of the power system

ISSN: 2582-6271

Vol.1 No.5; 2020

Figure 5: The Modelled power system

3.0 RESULTS OF SIMULATION

3.1 Table of MVA flow with and without compensation against Lines

Line Name	MVA flow without compensation	MVA Flow with compensation
Kainji-Jebba	191.1177676	201.6087829
B. Kebbi- kainji	138.9244399	138.9244399
Shiroro- katampe	59.08613173	123.3008066
oshogbo- Ganmo	255.0833954	75.3531326
Jebba- oshogbo	308.44411	121.40419
Jebba-	308.44411	121.40419

http://ijaser.org

Page 81

ISSN: 2582-6271

Vol.1 No.5; 2020

oshogbo		
Ikeja West-	711.8944074	257 2491427
oshogbo		257.2481437
oshogbo-	401 4705 616	
Ayede	491.4705010	116.0854575
Ganmo -	270 2126608	182.4674403
Jebba	570.5120098	
ikeja West-	782 2050017	453.2031702
olorunsango	785.5950017	
oshogbo-	121 7062622	77.06083234
olorunsango	451.7005052	
Jos-Mando	305.6352763	112.5482843
Ikeja West-	20 06616061	
Akangba	28.96616861	28.86920291
Egbin-Ikeja	007 4000500	289.0269124
West	887.4068586	
Aja - Egbin	218.2671245	218.2671245
Egbin-Benin	1514.454932	536.1736731
Ikeja West -	1157 01 0172	430.5190459
Oke Aro	1157.016472	
Oke Aro -	1102 229619	375.3991545
Egbin	1102.238018	
Ikeja West -	707 7020402	239.2402424
Omotosho	707.7020493	
Omotosho -	456 0017562	84.68026934
Benin	430.9917302	
Jebba GS -	129 2206156	206 2452295
Jebba	428.2390130	500.5452265
Ajaokuta -	60.02271202	
Benin		90.09351158
Benin -	1026 021270	620 5272706
Onitcha	1020.0312/9	029.5575790
Ajaokuta -	61.12165503	Q1 16170000
Benin		91.404/0855
Geregu-	209.3447002	200 7566967
Ajaokuta		200.7500807

ISSN: 2582-6271

Vol.1 No.5; 2020

Geregu- Ajaokuta	209.3447002	200.7566867
Benin-sapele	800.8706103	708.7550022
sapele-Delta	136.2900401	134.1732413
Kainji-Jebba	191.1177676	201.6087829
Benin - Delta	428.6457165	397.175757
Onitcha-New	42.23569173	121.7239159
Haven		
Okpai -	284.5368663	219.1252758
Onitcha		
Okpai -	200 1557250	221 5012007
Onitcha	200.4337339	221.3013697
Onitcha-	757 10/6328	
Alaoji	757.1040528	515.5505450
Alaoji-Afam	393.3626576	517.0425284
New heaven -	51 2110/073	99 96985972
Ugwuaji	34.24134973	99.90965972
Ajaokuta -	396 4702369	173.3614639
Lokoja	550.4702505	
Jebba GS -	428 2396156	306.3452285
Jebba	120.2350150	
Ihovbor-	126.2043172	222,7825526
Benin		222.7020020
aladji-Sapele	74.93780423	74.09671156
aladji-Delta	260.767858	259.4512722
Yola-Gombe	74.41377561	74.41377561
Mando-Kano	106.9164445	107.7558938
Gombe-Jos	183.7362874	199.7824925
Gombe-	78.60615939	80 34837301
Damaturu		
Gwagwalada-	136.0804444	43 53730942
lokoja	100.000++++	-3.33730342
Jebba-Shiroro	219.3334711	53.44878725
Gwagwalada-	136.0804444	43 53730942
lokoja	130.0604444	-3.33730342

ISSN: 2582-6271

Vol.1 No.5; 2020

Shiroro-	89.75949646	163.5133015
Gwagwalaua		
katampe-	80.39912569	17.98856176
Gwagwalada		
Ugwuaji-	333.1656428	215.8978878
Jos-Markurdi	275.3659151	123.2834555
Jos-Markurdi	275.3659151	123.2834555
Ugwuaji-	333.1656428	215,8978878
Markurdi		
Ikot Ekpene- Ugwuaji	768.2425931	431.024755
Jebba-Shiroro	219.3334711	53.44878725
Ikot Ekpene-	462 6221000	470 7040405
Adiabor	463.6331998	470.7219485
oshogbo-	500 000500	404 450000
Ihovbor	502.3383532	184.4530935
Ikot Ekpene-	222 000700	
Alaoji	222.898708	/0./21556/4
Ikot Ekpene-	207 0240262	164.8824299
Afam	297.9249363	
Mando-	64 50005050	189.7897228
Shiroro	04.39223609	
Adiabor-	FC2 112F121	
Odukpani	502.1125131	558.1/3/002
Egbin-Lekki	91.63646282	91.63646282
aja-Alagbon	78.02324196	78.02324196
Alaoji-Owerri	17.25337644	17.25337644
Owerri-	89.0958636	
Ahoada		89.0958636
Bus 47 -	162.7686541	
Ahoada		162.7686541
Yenogua-Bus		
47	132.4122351	132.4122351
Alaoji-Aba	176.2350766	176.2350766
-		

ISSN: 2582-6271

Vol.1 No.5; 2020

Aba-ITU	298.9747867	298.9747867
Mando- Shiroro	64.59225869	189.7897228
ITU-Eket	365.0672303	365.0672303
Eket-Ibom	458.7842354	458.7842354

3.2 Graphs of MVA flow against the Lines on Base Simulation

Figure 6: Graphs of MVA flow against the Lines on Base Simulation

ISSN: 2582-6271

Vol.1 No.5; 2020

3.3 Discussion of Results/ Summary

The results obtained for base simulation revealed an MVA flow of 334.87 KVA and 212.73 MVA after compensation which showed a huge brought down of the MVA flow. The violated lines were Egbin – Ikeja West as 887MVA, Egbin –Benin 1514,

Ikeja West- Ikaro 4457 MVA, Ikaro- Egbin 1102 MVA, Benin- Onitsha-1026 MVA, Benin –Sapele 800MVA, Onitsha- Aloji 757 MVA, Ikotu Ekpene- Ugwuaji 768MVA. However, after compensation there were improvement in areas of violation on lower limit and reductions at higher limits as recorded again Egbin – Ikeja West as 289 MVA, Egbin –Benin 536 MVA,

Ikeja West- Ikaro 430 MVA, Ikaro- Egbin 375 MVA, Benin- Onitsha 629 MVA, Benin – Sapele 788MVA, Onitsha- Aloji 515 MVA, Ikotu Ekpene- Ugwuaji 431MVA.

The series compensation using TCSC improved the system voltage and power transfer capability of the lines

REFRENCES

Acha, C. R. Fuerte-Esquivel, H. Ambriz-Pérez, C. Angeles-Camacho, "FACTS: Modelling and simulation in power networks," ©2004, John Wiley & Sons Ltd, England, pp. 171-1

Adepoju G. A., Komolafe, O.A and Aborisade, D.O, (2011), "Power flow Analysis of the Nigerian Transmission System Incorporating Facts Controllers", International Journal of Applied Science and Technology Vol. 1 No. 5;

Helbing, S. J. and Karady, G. G "Investigations of an advanced form of series compensation," IEEE Trans. Power Delivery, vol. 9, no. 2, pp. 939-947, Apr. 1994.

Kadia, J.V and Jamnani J.G (2012), "Modeling and Analysis of TCSC controller for Enhancement of Transmission Network, International Journal of Emerging Technology and Advanced Engineering, Vol2, issue 3

Low, S.H (2013), "Convex Relaxation of Optimal Power flow; A tutorial", 2013 IREP symposium Bulk power Dynamic and control of the emerging power grid, pp1-06venson Nnonyelu, Chibuzo and Madueme Theophilus, (2013) "Power System Contingency Analysis: A Study of Nigeria's 330KV Transmission Grid" conference paper University of Nigeria

Obi, P. I and Offor, k. J, (2012) "Power Flow and Contingency Assessment of the Existing 330kV Nigeria Power Grid to Cope With The Proposed Increase In Power Generation in 2014, International journal of

ISSN: 2582-6271

Vol.1 No.5; 2020

Engineering Research and Technology (IJERT), Vol 1 issue 4

Ogbuefi U. C.and Madueme T. C "(2015) "A Power Flow Analysis of the Nigerian 330 KV Electric Power System", IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) Volume 10, Issue 1, PP 46-57

Oltean, S.E. (2012), Modern control of static var compensator for power system stability enhancement, Scientific Bulletin of the "PetruMaior" University of Tîrgu Mureş, vol. 9 (XXVI), no. 1, pp. 33-37.

Oltean, S. E, Dulau, M and Duka, A.V, (2012), "Modelling and Simulation of static Var compensator Fuzzy control for power stability enhancement", Interdisciplinary in Engineering International conference", Petru maior

Sankarbabu, P and Subrahmanyam J.B.U, (2010), "A novel on Line Fuzzy control method of Static Var compensation for an effective Reactive power control and Transmission lines", ACTA Electrotechnical, Vol 51, No1, pp 45-51

Zhou, X and Liang, J (1999), "Overview of control schemes for TCSC to enhance the stability of power systems", IEE Proc. Gener. Transm. Distrib. vol. 146, no. 2 www.vanguard.com/2018/07 Reported by Ediri Ejoh.