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ABSTRACT 

In this article a general study is made about the lungs, their characteristics, their main function, detailing some 

aspects of the respiratory process; the main pulmonary diseases are indicated and how to prevent them. A 

model is made by means of a system of differential equations that simulates the blood oxygenation process, 

a qualitative study is made, and conclusions are given regarding the functioning in a healthy person; in the 

critical case of a pair of pure imaginary eigenvalues, the system is reduced to the normal form to facilitate 

qualitative study, where the cyclical behavior of the process is seen. Examples are given, the quays show the 

results obtained in a theoretical way, indicating the validity of the simulation with the real problem. 
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I. INTRODUCTION 

The lungs are spongy and elastic organs formed by millions of air-filled alveoli. It is approximately 25 cm 

long and 700 g in weight. The right lung is larger in width than the left, as it has three lobes, one more 

than the left, but it is shorter in height, because on the right side the liver is present, causing the diaphragm 

to be higher. In the left lung there is a cardiac notch. 

 

The lungs are attached to the pericardium through pulmonary ligaments and to the trachea and heart by 

structures called the hilum, comprising pulmonary vessels, lymphatic vessels, bronchial vessels, main 

bronchi and nerves that arrive and leave the lungs. The lungs are covered by a thin layer, the pleura that 

consists of a transparent and thin membrane. The inner pleura is attached to the pulmonary surface, and 

the outer pleura is attached to the wall of the rib cage. In the intermediate space of the pleura there is a 

small space, occupied by a lubricating liquid secreted by the pleura, this liquid is what holds the two 

pleuras together, due to surface tension, causing them to slide during breathing movements [9], [10]. 
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The base of each lung rests on the diaphragm, an organ that separates the chest from the abdomen, present 

only in mammals, promoting, together with intercostal muscles, respiratory movements. In the lungs, the 

bronchi ramify intensely, giving rise to increasingly thin tubes, the bronchioles. The highly branched set 

of bronchioles is the bronchial tree or respiratory tree. 

 

In pulmonary breathing, air enters and leaves the lungs due to contraction and relaxation of the diaphragm. 

When the diaphragm contracts, it decreases the pressure in the lungs and the air outside the body enters 

rich in oxygen; process called inspiration. When the diaphragm relaxes, the pressure inside the lungs 

increases and the air that was inside now comes out with carbon dioxide; process gives rise to a cyclical 

process, as this exchange of gases between the lungs and the environment periodically takes place. This 

would be an essential way to detect lung diseases, including the coronavirus [17]. 

 

People can stop breathing but no one can stop breathing for more than a few minutes, because the 

concentration of carbon dioxide in the blood gets so high that the body can no longer supply energy to the 

cells and the bulb, part of the nervous system that it forms the brain, sends nerve impulses to the diaphragm 

and intercostal muscles, so that they contract and breathing is resumed normally. 

 

The person may suffer from different lung diseases such as, Bronchitis, Tuberculosis, Pulmonary 

emphysema, Pneumonia, Asthma, Lung cancer, etc. When inflammation occurs in an individual's lungs, 

more specifically in the alveoli, we call it pneumonia, due to infection caused by bacteria, viruses, fungi 

and other infectious agents. Pneumonia can cause death if left untreated; these diseases can damage the 

pulmonary alveoli, decreasing the lung's ability to perform its function [4], [11], [13], [14]. 

 

The main purpose of the lungs is to supply our blood with oxygen, which is transported to the cells of the 

body. The other respiratory organs have the function of directing the air to the lungs, it is in them that the 

conversion of venous blood, blood low in oxygen and rich in carbon dioxide, into arterial blood, blood 

rich in oxygen occurs. When we breathe, we start a complex path, the air enters through the nose, or 

through the mouth, goes to the trachea following small tubes, the bronchi. From the bronchi, air is taken 

to other pulmonary regions; an involuntary movement that is controlled by the brain controls the entry 

and exit of air from the lungs. 

 

Respiratory movement is controlled by a nerve center located in the spinal cord; under normal conditions, 

this center produces an impulse every 5 seconds, stimulating the contraction of the thoracic muscles and 

the diaphragm, where we inhale. However, when the blood becomes more acid due to the increase in 

carbon dioxide, the medullary respiratory center induces the acceleration of respiratory movements. 
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In the event of a decrease in the concentration of oxygen gas in the blood, the respiratory rate is also 

increased; this reduction is detected by chemical receptors located on the walls of the aorta and the carotid 

artery; however, when the air enters or leaves the organism through the mouth, however, the moistening 

and heating of the air is incomplete without the filtration of particles of dust, smoke, and even microscopic 

living beings, such as viruses and bacteria, capable of causing damage to our health. Some impurities are 

"filtered" in different organs of the respiratory system, but others can pass to the lungs, causing diseases. 

 

Human beings have neurons in the bulb region that guarantee the regulation of breathing. The bulb 

perceives changes in the pH of the surrounding tissue liquid and triggers responses that guarantee changes 

in the respiratory rhythm. When carbon dioxide levels rise in the blood and cerebrospinal fluid, a drop in 

pH occurs. This happens because the carbon dioxide present in these places can react with water and 

trigger the formation of carbonic acid.  

 

The bulb then notices these changes, signals are sent to the intercostal muscles and diaphragm to increase 

the intensity and rate of breathing. When the pH returns to normal, there is a reduction in respiratory rate 

and intensity. It is worth noting that changes in the level of oxygen in the blood trigger few effects on the 

bulb. However, when the levels are very low, the breathing rate increases. [12]. 

 

Several works, books and articles related to processes in human life are known; among these books 

dedicated to mathematical modeling, the following are indicated [6], [7] and [8] in which real problems 

are simulated by means of equations and systems of differential equations, where in addition a certain 

treatment is done to give conclusions of the processes. In [8] the authors simulate the process of polymer 

formation in the blood using autonomous systems of differential equations of third and fourth order, giving 

conclusions on the formation of polymers and domains. 

 

In [7] different problems of real life are treated by means of equations and systems of differential 

equations, all of them only in the autonomous case; where examples are further developed, and problems 

and exercises are placed so that they can be developed by the reader. The authors of [6] indicate a set of 

articles forming a collection of several problems that are modeled in different ways, but in general the 

qualitative and analytical theory of differential equations is used in both autonomous and non-autonomous 

cases. 

 

A compartment system essentially consists of a finite number of interconnected subsystems, called 

compartments, which exchange between and with the environment, amount of concentration of materials 

or substances, each compartment is defined by its physical properties; in particular, the dynamics of a drug 
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in the human body were treated; not all drugs have the same route, but in the ingestible case in [1], 

sufficient conditions are given for their elimination; the case of an inhalable drug is treated in [3] and 

injectable in [2], in all cases after the qualitative study of the system used in the modeling the future 

situation of the process is predicted. 

 

Insulin is a hormone produced by the pancreas; its function is to act in the reduction of glycemia (blood 

glucose rate). It is responsible for the absorption of glucose by cells; when insulin-glucose dynamics are 

not natural in the human body, diabetes can be produced, this dynamics in both a normal and diabetic 

person is modeled in [15] and [16]. The case of tissue replacement is simulated in [5], the case of diabetic 

foot is treated. 

 

Studies carried out in [21] have allowed the development of a mathematical model for the transmission of 

infectious diseases; this dynamic of contagion is modeled by means of sexual activity and, here, the 

concept of individuals susceptible to contagion with the disease is used. 

 

Pollution elimination problems are other models that have been treated by several authors, in particular 

cases with periodic coefficients [20]; this type of modeling is also used in [18] and [19], as it has the 

characteristics that best fit the real problem due to its characteristics. 

 

II. MODEL FORMULATION 

In order to simulate the process of blood oxygenation through the lungs, it is necessary to take into account 

some basic principles regarding this process, firstly that the lungs do not provide more oxygen than our 

body needs, so in their variation will increase proportionally to the concentration of carbon dioxide and 

decrease proportionally to its own concentration; but in the variation of carbon dioxide, it is added 

proportionally to its concentration and decreased proportionally to the concentration of oxygen. 

 

In order to formulate the model using a system of differentiable equations, the following variables will be 

introduced: 

 

-�̃�1  is the total concentration of oxygen in the blood at the moment t. 

-�̃�2  is the total concentration of carbon dioxide in the lungs at the moment t. 

In addition, �̅�1 and �̅�2 the optimal values of oxygen and carbon dioxide in the lungs respectively. 

 

Here the variables will be introduced 𝑥1 and 𝑥2 defined as follows: 𝑥1 = �̃�1 − �̅�1 and 

 𝑥2 = �̃�2 − �̅�2 so, if �̅�1 → 0 and �̅�2 → 0 the following conditions would be met �̃�1 → �̅�1 and  �̃�2 → �̅�2, 

which would constitute the main objective of this work. So, the model will be given by the following 
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system of equations, 

{
𝑥1

′ = −𝑎1𝑥1 + 𝑎2𝑥2 + 𝑋1(𝑥1, 𝑥2)

𝑥2
′ = −𝑎3𝑥1 + 𝑎4𝑥2 + 𝑋2(𝑥1, 𝑥2)

                                                                       (1) 

 

Where 𝑋𝑖(𝑥1, 𝑥2), (𝑖 = 1,2) they are disturbances not inherent in the process, which could at a given 

moment produce certain changes; and from a mathematical point of view they are infinitesimals of a 

higher order, those that admit the following development in series of potentials, 

 

𝑋𝑖(𝑥1, 𝑥2) = ∑ 𝑋𝑖
𝑝

𝑥1
𝑝1𝑥2

𝑝2

|𝑝|≥2

(𝑖 = 1,2), |𝑝| = 𝑝1 + 𝑝2 

 

The parameters present in the system (1), have the following meaning, 

𝑎1- It represents the coefficient of decrease in oxygen concentration as a function of its concentration. 

𝑎2- It represents the coefficient of increase in the concentration of oxygen as a function of the 

concentration of carbon dioxide. 

 

𝑎3- Represents the coefficient of decrease in the concentration of carbon dioxide as a function of its 

concentration. 

𝑎4- It represents the coefficient of increase in the concentration of carbon dioxide as a function of the 

concentration of oxygen. 

 

The characteristic equation of the matrix of the linear part of the system (1) has the following form, 

 

|
−𝑎1 − 𝜆 𝑎2

−𝑎3 𝑎4 − 𝜆
| = 0 

 

This expression is equivalent to, 

𝜆2 + (𝑎1 − 𝑎4)𝜆 +(𝑎2𝑎3-𝑎1𝑎4) = 𝟎                                                                    (2) 

In this case, applying the first approximation method, the following result is obtained. 

 

Theorem1: The null solution of the system (1) is asymptotically stable if and only if the following 

conditions are met: 𝑎1 > 𝑎4 and 𝑎2𝑎3 > 𝑎1𝑎4, otherwise, it is unstable. 

 

The proof is a direct consequence of the conditions of the Hurwitz theorem, because in this case both 𝑛1 

and 𝑛2 are positive, this responds to the asymptotic stability theorem of Liapunov's second method. 
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Suppose that 𝑎1 = 𝑎4 and 𝑎2𝑎3 > 𝑎1𝑎4,  , in this case the method of first approximation is not applicable 

because it has a double of pure imaginary eigenvalues; by means of a non-degenerate transformation 𝑋 =

𝑆𝑌, the system (2) can be transformed into the system, 

 

{
𝑦1

′ = 𝜎𝑖 𝑦1 + 𝑌1(𝑦1, 𝑦2)               

𝑦2
′ = −𝜎𝑖𝑦2 + 𝑌2(𝑦1, 𝑦2)            

                                                              (3) 

Nesse caso será aplicado o segundo método de Liapunov uma vez reduzido esse sistema à forma normal. 

Teorema2: A mudança de variáveis, 

{
𝑦1 = 𝑧1 + ℎ1(𝑧1, 𝑧2)                          
𝑦2 = 𝑧2 + ℎ2(𝑧1, 𝑧2)                                                                                         (4)                                                          

 

 

transforma o sistema (3) na forma normal,             

{
𝑧1

′ = 𝜎𝑖𝑧1 + 𝑧1𝑃(𝑧1𝑧2)                     

𝑧2
′ = −𝜎𝑖𝑧2 + 𝑧2𝑃2(𝑧1𝑧2)                 

                                                                     (5)  

Where ℎ𝑖 , 𝑖 = 1,2  𝑃 and �̅� are power series like 𝑋𝑖.  

Proof: Derivando a transformação (4) ao largo das trajetórias dos sistemas (3) e (5) se obtém o sistema 

de equações, 

{
(𝑝1 − 𝑝2 − 1)𝜎𝑖ℎ1 + 𝑧1𝑃 = 𝑌1 −

𝜕ℎ1

𝜕𝑧1
𝑧1𝑃 −

𝜕ℎ1

𝜕𝑧2
𝑧2𝑃

(𝑝1 − 𝑝2 + 1)𝑖𝜎ℎ2 + 𝑧2𝑃 = 𝑌2 −
𝜕ℎ2

𝜕𝑧1
𝑧1𝑃 −

𝜕ℎ2

𝜕𝑧2
𝑧2𝑃

                                                         (6) 

The system (6) allows to determine the series coefficients, ℎ1, ℎ2, 𝑃 and 𝑃; the resonance equations are, 

𝑝1 − 𝑝2 − 1 = 0 and 𝑝1 − 𝑝2 + 1 = 0; with what 𝑃 and  𝑃  are different from zero in the resonant case, 

being ℎ1 and  ℎ2 equal to zero in this case, as they are arbitrary applying uniqueness if they become equal 

to zero, and by the resonance equations it is deduced to forms of the powers of 𝑃 and  𝑃. In the non-

resonant case, the series 𝑃 and  𝑃 null and in this case ℎ1 and  ℎ2 are uniquely determined. 

The series 𝑃 and  𝑃 admit the following development in power series, 

𝑷(𝒛𝟏𝒛𝟐) = ∑ 𝒂𝒏

∞

𝒏=𝒌

(𝒛𝟏𝒛𝟐)𝒏 + 𝒊 ∑ 𝒃𝒏(𝒛𝟏𝒛𝟐)𝒏

∞

𝒏=𝒍

 

Theorem3: If 𝑎𝑘 < 0, then the trajectories of the system (5) are asymptotically stable, otherwise they are 

unstable. 
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Proof: Consider the Lyapunov function defined positive, 

𝑉(𝑧1, 𝑧2) = 𝑧1𝑧2 

The function 𝑉 is such that its derivative along the trajectories of the system (5) has the following 

expression, 

 

𝑉′(𝑧1, 𝑧2) = 𝑎𝑘(𝑧1𝑧2)𝑘+1 + 𝑅(𝑧1, 𝑧2) 

 

It can be seen that the derivative 𝑉′(𝑧1, 𝑧2) is defined negative, because in the function 𝑅(𝑧1, 𝑧2) you only 

have terms of a degree greater than 2(𝑘 + 1). This coupled with that 𝑉(𝑧1, 𝑧2) is positive and guarantees 

the asymptotic stability of the null solution of the system (5). 

 

Observation: If it appears that the solutions in the system (5) have a cyclic form, that is to say they 

constitute periodic solutions, as shown in the system that appears below. 

 

{
𝑧1

′ = 𝜎𝑧2 + 𝑧1𝑃[𝑧1𝑧2{(𝑧1+𝑖𝑧2)(𝑧1−𝑖𝑧2) − 1}]      

𝑧2
′ = −𝜎𝑧1 + 𝑧2�̅�[𝑧1𝑧2{(𝑧1+𝑖𝑧2)(𝑧1−𝑖𝑧2) − 1}]  

 

 

The functions 𝑧1 = 𝑠𝑒𝑛𝜎𝑡, 𝑧2 = 𝑐𝑜𝑠𝜎𝑡 they are periodic solutions of the previous system; and the 

eigenvalues of the matrix of the linear part of the system are 𝜆1 = 𝑖𝜎 and 𝜆2 = −𝑖𝜎, what corresponds 

with the studied problem. This is in correspondence with blood oxygenation, a process that is done 

periodically, the simulation corresponds with what appears in real life. 

 

In correspondence with the sign of the coefficient of the real part of the first nonzero term of the function 

𝑃, a spiral could appear that could enter or leave the coordinate origin; the following as an illustration the 

following two cases are applied, 

 

{
𝑧1

′ = −𝑧1 + 3𝑧2 − 3𝑧1
3𝑧2

2       

𝑧2
′ = −2𝑧1 + 2𝑧2 − 2𝑧1

2𝑧2
3     

                                                                            (7) 
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Fig.1. Graph of 𝒛𝟏 in time.                               Fig.2. Graph of 𝒛𝟐 in time. 

 

And in this case for the system (7) the graph of 𝑧1 concerning 𝑧2 has shape, 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Graph of 𝒛𝟏 concerning 𝒛𝟐. 

 

From this it can be deduced that there is still a lot to digress if there is a spiral that converges towards the 

origin of the coordinate; this corresponds with what has been demonstrated before theoretically. 

 

III. CONCLUSIONS 

1. The problem of simulating the blood oxygenation process by means of the lungs is a topical and 

transcendental problem, because this way, conditions can be provided for a comfortable process. 

2. Theorem1 provides necessary and enough conditions for the total concentration of oxygen and the total 

concentration of carbon dioxide in the lungs to converge to allowable values making the patient's life 

comfortable. 

3. The critical case of a pair of pure imaginary eigenvalues, considered in this work is possible and that is 

why their study is important. 

4. Theorem 2 allows to transform the system (3) in the normal form, which facilitates the qualitative study 

to give conclusions regarding the patient's future situation. 
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5. If 𝑎𝑘 < 0, the total concentration of oxygen and the total concentration of carbon dioxide in the lungs 

converge to allowable values which would give comfort to the person's life; otherwise, urgent measures 

are needed to change the respiratory process to prevent the patient from entering into crises. 

6. Here, it is demonstrated that this is a cyclical problem, a model that simulates the process has periodic 

solutions; which corresponds to reality, as the exchange of air in the lungs is carried out periodically. 

7. The graphed examples allow us to realize that the solutions may be cyclical, but that they may be in the 

form of a spiral that enter the origin's exit; this indicates the possible pulmonary affect of the person 

suffering at that moment. 
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