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ABSTRACT 

In this paper, the control that has high gain feedback robust control with un- known parameters is designed. 

By the boundedness theorem and the Lyapunov stability theory, the velocity error is bounded and no collision 

occurs between the multi-agent is proved. Flocking of multi-agent system can be formed under the action of 

the high gain feedback robust control with unknown parameters. In the simulation, the feasibility of high gain 

feedback robust control for flocking of multi-agent system is verified. 

 

KEYWORDS: flocking of the multi-agent system, high gain feedback robust con- trol, unknown 

parameters 

 

1. INTRODUCTION 

Flocking is a common phenomenon in nature [1]. Scholars [2, 3, 4] have con- ducted fruitful 

researches on flocking systems. Such as, Reynolds [5] proposed the Boid model which was deemed 

as a computer model employed to simulate the aggregation behavior of animals. A adbabie et al. [6, 

7] conducted rele- vant analysis on the consistency of flocking in undirected switched networks. J 

Tanner [8, 9] allowed the system to reach a stable state through the design of the controller. Zhang 

et.al [10] studied flocking of heterogeneous multi-agents’ systems and Zhang et.al [11] studies 

flocking of high frequency feedback robust control with unknown parameters. 

 

High gain feedback robust control [12, 13, 14, 15] can adjust parameters based on sliding mode 

control which has good robustness. Jin[16] studies formation and containment control of multi-agent 

systems based on high-frequency feed- back robust control. 
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The innovation of this paper lies in the study conducted for the flocking of multi-agent system with 

high gain feedback robust control with unknown parameters. A controller with high gain feedback 

robust control is designed. It is proved that under the action of the controller, the speed of the flocking 

of the multi-agent system is consistent and no collision occurs. The feasibility of the system is 

verified by simulation, and the unknown parameters are identified. 

 

2. Preliminaries 

A set of N + 1(N ≥ 1) agents moving in an n-dimensional Euclidean space are considered. 

The virtual leader of the multi-agent is described by 

 

ẋ 0(t) = v0(t),                          

v˙0(t) = a0, 
 

( ) nRtx 0  is the position vector of the virtual leader, ( ) nRtv 0  is the velocity vector of the virtual leader, 

+Ra0  is the acceleration of the virtual leader. 

 

The dynamic of the following agent is depicted by  

( ) ( )

( ) ( )( ) ( )



=+=

=

Nituttxftv

tvtx

iii

ii

,,2,1,, 



                                                

(2) 

( ) n

i Rtx   is the position vector of the agent i , ( ) n

i Rtv   is the velocity vector of the agent i , the unknown 

nonlinear dynamic property ( )( )ttxf i ,
 
of the follower which is bounded, which satisfies Assumption 1 

and Assumption 2. 

Assumption 1 The nonlinear function ( )( ) n

i Rttxf ,
 

can be linearly parameterized: 

( )( ) ( )( ) ( )( ) ii

T

iii ttxttxgttxf  ,,, +=
，

( )( )ttxg i ,
 
is the known nonlinear function, ( )( ) nm

ii Rttx ,  is a 

known basis vector function, m

i R  is unknown constant parameter. 

Assumption 2 The nonlinear vector-valued continuous function ( )( )ttxf i ,  is not determined, exists an 

upper bound function ( ) + R , make it satisfy ( )( ) ( ) ttxf i , . 

  
(1) 
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Figure 1: Switching process of dynamic graphs. 

 

The directed graph G  describe the topology between agents. The directed graph G is composed of a 

vertex set V  and edge set E ,  NV ,...,2,1= , ( ) VjijiE = ,|, . If agent i  can receive the information 

of agent j , then ( ) Eij , , otherwise ( ) Eij , . 

 

The adjacency matrix 
nn

ij RaA = ][  of graph G , where ija  satisfies 





=
j,follower  fromn informatio receivenot  does ifollower  ,0

j,follower  fromn informatio receivecan  ifollower  ,1
ija

                         

(3) 

The Laplace matrix of graph G is defined as 
nn

ij RlL = ][ . The element in L  satisfies 

.,,
1

jialal ijij

N

j

ijii −==
=  

 

Definition 1 [17] For G , if there is a path in G  from every node i  in G  to node 0 , we say that node 0  

is globally reachable in G , which is much weaker than strong connectedness. 

Definition 2 [7] A group of mobile agents is said to be asymptotically flocking. When all agents have the 

same velocity vector, and collision among each agent are always avoid. 

Lemma 1 [18] For the function ( ) ( ) ( ) 22, xxkxyxyxN nd −= , nk  is a positive constant, ( )x  is a 

function than has nothing to do y , ( )yxNd ,  has an upper bound function ( )
n

d
k

y
yxN

2

,   .  
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Lemma 2 [18] If the real matrix 
nnRA   is a positive definite symmetric, for any vector nnRx   satisfy : 

( ) ( ) xxAAxxxxA TTT   , ( )A  is the upper bound of the eigenvalues of matrix A , ( )A  is the lower 

bound of the eigenvalues of matrix A . 

Lemma 3 [18] If the function ( ) 0: → ++ RRtV , and ( ) ( )  +− tVtV , +R , , we have 

( ) ( ) ( )tt eetVtV 



 −− −+ 10 . 

 

3. Design of control based on high-gain feedback robust control with unknown parameters  

we can define the set of control laws, 

( ) ( )( ) ( ) ( )( ) ( ) NjietxVtavvtaKtu i

T

iiijijx

N

j

ijij

N

ijj

iji i
,...,2,1,,ˆ22 2

1,1

1 =−−−−= 
==

                  （4） 

( ) Njite
K

K
iii ,...,2,1,,ˆ

1

2 ==                                                                        （5） 

control parameters 0,0 21  KK ,   is unknown parameter , i̂  is the estimated value of agent i  on i , 

( )  is the upper bound function of the unknown nonlinear function ( )( )ttxf i , .  

( )( )txV ijijxi
  is a direction vector of the negative gradient of an artificial potential function defined by 

the following equation: 

( )( )
( ) ( )

( ) ( )Rtx
txtxR

txV ij

ijij

ijij ,0,
11

22
2

+
−

=

                                       

（6） 

with ( ) ( ) ( )txtxtx jiij −= , which allows both collision avoidance and maintaining links in the network. R  

represents the maximum distance within which multi-agents are able to obtain information from other 

agents. when +→ Rxij  or −→ 0ijx , ( )( )txV ijij  is unbound.  

 

Based on the definition of ( )( )txV ijij ,  

( )( ) ( )( ) ( )( ) NjitxVtxVtxV ijijxijijxijijx jiij
,,2,1,, =−==

                                
（7） 

Define the velocity error as: ( ) ( ) ( ) .,,2,1,0 Nitvtvte ii =−=
 

According to the definition of ( )tei , we can get the following formula: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) Njitvtvtvtvtvtvtete jijiji ,,2,1,,00 =−=−−−=− . 
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For convenience, 
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The vector form of derivative of the velocity error: 0vve  −= .  

By (1), ( ) 00 atv =  is bounded. ( )f  and ( )tv0
  satisfy both bounded at the same time. 0a  has no effect on 

system analysis. Assume 00 =a .  

4.  The main theory results 

Theorem 1 In the multi-agent systems (1) and (2), under the control laws (3), velocity error variable 

satisfies 
( )LK

M
e

1

2

4
  . The speed of the multi-agent is gradually stable, and there will be no collision 

between agents. 

Proof: Construct Lyapunov function ( )tVG  
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(8) 

The generalized time derivative of ( )tVG  is  

( ) ( ) ( )( )
= ===

++=
N

i

N

j

ijijij

N

i

i

T

i

N

i

i

T

iG txVta
KK

ee
K

tV
1 111211

1ˆ11 
 

                                 

(9) 

The first part of (9) can be written as 
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The first part of (10) can be written as 
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The last item of (10) can be written as 
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(12) 

By Assumption 2 and take the norm of the first term, 

( ) ( ) efeT   .                                                                                   (13) 

 

By Lemma 1, we have  

  ( ) ( ) ( ) ( )



1222 −− eeeefe TT                                                         (14) 

 

By (12) and (14), we have  
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For the second item of (9), we have 
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By (7), the last item of (9) can be written as  
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Above all, we have 
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By Lemma 2, we have 
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According to Lemma 3, by solving the above differential inequality, we can get the upper bound of ( )tVG  
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M
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The limit of ( )tVG  is  
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By ( )tVG , we have ( )tVKee G

T

12 , then ( )
( )LK

M
tVKe G

1

2
1

t 4
2lim =

→
. 

Above all, it can be concluded that the velocity error of the multi-agent is bounded by the feedback robust 

control of high gain with unknown parameters. 

 

Theorem 2 There will be no collision occurring between the multi-agent under the control of the high 

gain feedback robust with unknown parameters. 
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Proof: If there is a collision occurs between the agent i  and the agent j , we have .0
2

→ijx
 
Based on 

the definition of ( )( ).txV ijij  
if 0

2

→ijx , we have ( )( ) →txV ijij . If ( )( ) →txV ijij , and 
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 , we have ( ) →tVG . According to the 

formula (21), we can get the upper bound of the ( )tVG . This is contradictory. We can get that there will 

be no collision occurs between agents.  

 

5.  Simulation Results  

In this section, we use an example to verify the feasibility of the algorithm. The unknown nonlinear 

function f  is assumed as 
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 (23) 

and it easily knows that the function f  satisfies the assumption condition. 

 

We assume ( ) 60= . Assuming that 20 agents are randomly distributed on a circle with a radius of 1, the 

initial speed of the agent is chosen at randomly. Arrows indicate the direction of agent’s movement.  

 
Figure 2: Flocking of N = 20 agent’s initial state. 
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Figure 2 depicts the initial state of 20 agents. 20 agents are evenly distributed on a circle with a radius of 

1, and the initial movement direction of the agents are inconsistent. 

 
Figure 3: Flocking of N = 20 agent’s final state. 

 

Figure 3 shows the final states of flocking of the multi-agent under the multi-agent under the control of 

high gain feedback robust control with unknown parameters. The speed directions of the multi-agent are 

consistent, and no collision occurs between the multi-agent.  

 

 
Figure 4: Velocity error of flocking of the multi-agent of high gain feedback robust control with 

unknown parameters. 

 

Figure 4 shows the speed error of the multi-agent is 0, velocity error of flocking of the multi-agent of high 

gain feedback robust control with unknown parameters is bounded. 
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Figure 5: Unknown parameter identification. 

 

Figure 5 shows that the flocking of the multi-agent system under the action of the controller can identify 

the unknown parameters.  

 

6.  CONCLUSIONS  

In this paper, the flocking of the multi-agent of high gain feedback robust control with unknown 

parameters is proposed. It is proved that the velocity error of the multi-agent is bounded, and no collision 

occurs. In the simulation, under the action of high gain feedback robust control with unknown parameters, 

the flocking of the multi-agent is obtained. Simulation results show that under the action of the controller, 

the multi-agent system can achieve the same speed, the same direction of motion, and the unknown 

parameters can be identified. 
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