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ABSTRACT 

In spatial data, multicollinearity and spatial heterogeneity are often encountered simultaneously. To overcome 

the problem of heterogeneity in spatial data, GWR method can be used but this method can only overcome 

heterogeneity but not multicollinearity. Therefore, another method is needed to overcome multicollinearity 

in spatial data. The purpose of this study is to look at the ability of LCR-GWR and GWL methods to overcome 

multicollinearity problems simultaneously. The best method is determined by the results of the study which 

has smaller AIC and RMSE values. The results showed that the GWL method has lower AIC and RMSE 

values compared to the LCR-GWR model.  Therefore, it can be said that GWL is better able to overcome 

multicollinearity and spatial heterogeneity in Income data compared to LCR-GWR. 

 

KEYWORDS: Multicollinearity, Spatial, LCR-GWR Regression, GWL Regression. 

 

1. INTRODUCTION 

Spatial data is defined as geographically oriented data and has a specific coordinate system and is 

characterized by spatial dependence and heterogeneity (spatial structure) which is then referred to as 

spatial effects [1].  To analyze spatial data on point approach, the method can be used is the Geographically 

Weighted Regression [2]. Geographically Weighted Regression (GWR) is a regression analysis method 

with parameter estimation using the Weighted Least Square (WLS) procedure to handle spatial 

heterogeneity problems by forming a local model that can model spatially varying relationships between 

response variables and predictor variables for each location by giving greater weight to adjacent data 

points compared to data points that are far apart [3]. 
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In spatial data that contains multicollinearity, the GWR method can no longer be used so a method that 

can handle multicollinearity in spatial data is needed.  Some methods to handle multicollinearity problems 

in regression analysis include the Ridge Regression and Lasso Regression methods.  Methods to overcome 

local multicollinearity and spatial heterogeneity in GWR models are the Locally Compensated Ridge-

Geographically Weighted Regression (LCR-GWR) method first introduced by [4] and the Geographically 

Weighted Lasso (GWL) method introduced by [5].  The GWL method develops the concept of Least 

Absolute Shrinkage and Selection Operator (LASSO) with the solution used is the Least Angle Regression 

(LARS) algorithm so that the insignificant parameter coefficient will shrink to zero [6]. Meanwhile, the 

LCR-GWR method develops the Ridge concept in the parameter estimation process by using different 

bias coefficients at each observation location [7].  With this method, each region will have a different 

regression model according to its own characteristics.  

 

Previous research on the GWL method such as research by [8] who conducted GWL modeling on poverty 

data in Indonesia concluded that the GWL method can take a better solution than the GWR method if 

multicollinearity in spatial data can be overcome. Furthermore, research on the LCR-GWR method in the 

case of stunting in East Nusa Tenggara concluded that the LCR-GWR method was able to produce a better 

model in handling local multicollinearity compared to the GWR method [7]. Based on the description 

above, the author is interested in conducting research using the LCR-GWR and GWL methods to handle 

multicollinearity in Income data in the United States in 2022. 

 

2. GEOGRAPHICAL WEIGHTED METHOD FOR SPATIAL DATA 

Spatial data is characterized by spatial dependence and heterogeneity (spatial structure) which is then 

referred to as spatial effects.  Based on Tobler's law I (1979), which says that everything that is 

interconnected will have a greater influence if it is close to each other.  Spatial dependence, also known 

as spatial autocorrelation, is a condition in which observations in one location affect the location of other 

observations that are located nearby [1]. To test spatial dependence, the Moran Index is used [9].  The 

statistical test for Moran's index is formulated as follows: 

 

𝑍𝑐𝑜𝑢𝑛𝑡 =
𝐼 − 𝐸(𝐼)

√𝑉𝑎𝑟(𝐼)
 

 

Where 𝐼 = Moran’s I value, 𝐸(𝐼) = Means of I, 𝑉𝑎𝑟(𝐼) = Variance of I.  The value of I is in the interval -

1 and 1. Data contains positive spatial dependence if I > E(I) [10] 
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The next characteristic of spatial data is the presence of spatial heterogeneity.  Spatial heterogeneity occurs 

because it is caused by the diversity of characteristics of a location and its geographical location [11].  

Spatial heterogeneity can be known by the diversity test, namely the Breusch-Pagan Test with the 

following formula: 

 

𝐵𝑃 = (
1

2
) 𝒇𝑻𝒁(𝒁𝑻𝒁)−𝟏𝒁𝑻𝒇 ~ 𝜒𝑝

2 

 

with 𝒇 = (𝑓1, 𝑓2, … , 𝑓𝑛 )
𝑇 : 

 

𝒇𝒊 =
𝑒𝑖
2

𝜎2
− 1        

 

Where 𝑒𝑖
2 = Error for the 𝑖th observation with a matrix of size (n×1), 𝒇 =Vector of 

size (𝑛 × 1), 𝑛 =Number of observation areas, 𝜎2 = Variance of 𝑒𝑖
2, 𝒁 = Matrix of size n×(p+1) containing 

the vector of X. 

 

2.1 Geographically Weighted Regression (GWR) 

Geographically Weighted Regression (GWR) is a multiple regression to handle the problem of spatial 

heterogeneity that models spatially varying relationships between response variables and predictor 

variables for each location by giving greater weight to data points that are close together compared to data 

points that are far apart. [3].  The GWR model is written in the following form: 

 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 휀𝑖

𝑝

𝑘=1

 

 

With 𝑦𝑖 = Observation value of response variable for 𝑖th location, 𝑥𝑖𝑘= Observation value of predictor 

variable k at 𝑖th location, 𝛽0(𝑢𝑖, 𝑣𝑖) = Intercept at the 𝑖th observation location, 𝛽𝑘(𝑢𝑖, 𝑣𝑖)= Coefficient of 

𝑘th local regression at 𝑖th observation location, 휀𝑖𝑘 = Error at 𝑖th observation location, (𝑢𝑖 , 𝑣𝑖) = Geographic 

coordinates of the 𝑖th observation location 

 

In the GWR model, where parameters are estimated by the Weighted Least Square (WLS) procedure, 

making the weighting system dependent on location in geographic space.  Weights are assigned according 

to their proximity to location i. Data from observation locations close to i are given greater weight than 

data from observation locations further away.  Suppose the weight for each 𝑖th location is 𝑤𝑖𝑗 where, then 
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𝑗 = 1, 2, 3, … , 𝑛 the parameters for the 𝑖th location are estimated by minimizing the sum of the following 

error squares: 

∑ 𝑤𝑗
𝑛

𝑗=1
(𝑢𝑖 , 𝑣𝑖  )휀𝑗

2 =∑ 𝑤𝑗
𝑛

𝑗=1
(𝑢𝑖 , 𝑣𝑖  ) [𝑦𝑗 − 𝛽0(𝑢𝑖, 𝑣𝑖) −∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑗𝑘

𝑝

𝑘=1

]

2

 

 

So, the parameter estimation of the GWR model for each observation location is as follows: 

 

�̂�(𝑢𝑖, 𝑣𝑖)   = (𝑿
𝑻𝑾(𝑢𝑖 , 𝑣𝑖)𝑿)

−1𝑿𝑻𝑾(𝑢𝑖 , 𝑣𝑖)𝒀 

 

The 𝑾(𝑢𝑖, 𝑣𝑖) matrix is written in the following form: 

 

[

𝑤1(𝑢𝑖, 𝑣𝑖) ⋯ 0 0
0 𝑤2(𝑢𝑖, 𝑣𝑖) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑛(𝑢𝑖, 𝑣𝑖)

] 

 

To form a weighting matrix, a weighting function is needed which is influenced by the size of the 

neighborhood called the bandwidth and then adjusted to the proximity of the 𝑖th location point [6].  

Bandwidth is the radius of a circle where points within the radius of the circle are still considered 

influential in shaping the model parameters of observation location i [12].  The weighting function is 

calculated from a kernel function that makes the observation location closer to the 𝑖th location point have 

a greater weight.  The kernel function used is the exponential kernel function.  The function has the same 

bandwidth for each observation with the following: 

 

𝑤𝑗(𝑢𝑖, 𝑣𝑖) = 𝑒𝑥𝑝 [
−𝑑𝑖𝑗

ℎ
] 

 

With 𝑑𝑖𝑗 is the distance between the 𝑖th observation location point and the 𝑗𝑡ℎ location which is calculated 

by Euclidean distance based on the coordinates of the spatial data to produce weights between 

observations.  The Euclidean distance in the GWR model is written in the following form: 

 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗)
2
+ (𝑣𝑖 − 𝑣𝑗)

2
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Meanwhile, h is the optimum bandwidth obtained using the Cross Validation (CV) method.  CV is an 

iterative process that aims to find the kernel bandwidth that minimizes the prediction error of all observed 

outcome variables [3].  CV is defined as follows: 

 

𝐶𝑉 =∑[𝑦𝑖 − �̂�≠𝑖(ℎ)]
2

𝑛

𝑖=1

 

 

Where �̂�≠𝑖(ℎ) is the estimated value for 𝑦𝑖 by omitting the 𝑖th location point observation in the prediction 

process and the optimum bandwidth (h).  The bandwidth that minimizes the CV value is the most suitable 

bandwidth to maximize the predictive power of the model.  

 

In the GWR model, there are two hypothesis tests, namely the model fit test and the model parameter 

significance test.  The GWR model fit test serves to explain whether there is a significant difference 

between the GWR model and the global linear regression model. [12].  The GWR model fit test is 

calculated with the following formula: 

 

𝐹𝑐𝑜𝑢𝑛𝑡 =

(𝑆𝑆𝐸(𝐻0) − 𝑆𝑆𝐸(𝐻1)
𝑣

𝑆𝑆𝐸(𝐻1)
𝛿1

 

 

With the decision criteria reject 𝐻0 if  𝐹𝑐𝑜𝑢𝑛𝑡 > 𝐹𝛼,𝑑𝑓1,𝑑𝑓2 or if p-value < 0.05.  The degrees of freedom 

used are 𝑑𝑓1 =
𝑣2

𝑣∗
 and 𝑑𝑓2 =

𝛿1
2

𝛿2
 with 𝑣∗ = 𝑡𝑟[(𝑅0 − 𝑅1)

2] and 𝛿2 = 𝑡𝑟[(𝑅1)
2].[13] 

The significance test of the GWR model aims to see which parameters have a significant effect on the 

response variable [14].  The parameter significance test or partial test of the GWR model parameters is 

written in the following formula: 

 

𝑡𝑐𝑜𝑢𝑛𝑡 =
�̂�𝑘(𝑢𝑖, 𝑣𝑖)

𝑆𝐸[�̂�𝑘(𝑢𝑖, 𝑣𝑖)]
 

 

With SE is the Standard Error of �̂�𝑘(𝑢𝑖, 𝑣𝑖) and the decision criterion is to reject 𝐻0 if |𝑡𝑐𝑜𝑢𝑛𝑡| >

𝑡𝛼
2⁄ (𝑛−𝑝−1)

 or if p-value < 0,05. 

 

2.2 Locally Compensated Ridge-Geographically Weighted Regression (LCR-GWR) 
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In the case of spatial data with multicollinearity problems, there is a development of the GWR method 

using the Ridge Regression and Least Absolute Shrinkage and Selection Operator (LASSO) concept.  In 

Ridge regression, a constraint (bias term) is added to the least squares, so that the coefficient decreases 

and approaches zero [15]. The coefficient estimates in Ridge Regression are obtained by minimizing the 

following equation: 

�̂�𝑅 =
arg𝑚𝑖𝑛
𝛽

{∑(𝑦𝑖 − 𝛽0 −∑𝑋𝑖𝑘𝛽𝑘

𝑝

𝑘=1

)

2𝑛

𝑖=1

+ 𝜆∑𝛽𝑘
2

𝑝

𝑘=1

} 

 

With the constraint ∑ 𝛽𝑘
2𝑝

𝑘=1  ≥ λ, where λ is the amount that controls the amount of shrinkage and the value 

of λ≥0.  When λ=0, the Ridge Regression will produce the same estimate as OLS.  When λ→ ∞, the 

coefficient estimates approach zero [6]. One of the applications of the Ridge Regression concept in the 

GWR method is the Locally Compensated Ridge Geographically Weighted Regression (LCR-GWR) 

method. The LCR-GWR method is a development of Ridge regression to overcome multicollinearity in 

spatial data analysis.  This method uses one bias coefficient for a particular observation location, which 

means it will produce Ridge bias coefficients locally. Ridge parameters are allowed to vary in each region 

to adjust to the effects of multicollinearity between predictor variables in each observation area so that the 

parameter coefficients in the model are expected to be more accurate [7]. The estimation of the LCR-

GWR model is written in the following form: 

 

�̂�𝑳𝑪𝑹((𝑢𝑖, 𝑣𝑖) = (𝑿
∗𝑻𝑾(𝑢𝑖 , 𝑣𝑖)𝑿

∗ + 𝝀𝑰(𝑢𝑖, 𝑣𝑖))
−1

𝑿∗𝑻𝑾(𝑢𝑖 , 𝑣𝑖)𝒀
∗ 

 

𝜆𝑰(𝑢𝑖, 𝑣𝑖) which is the Locally Compensated (LC) value of 𝜆 in the observation (𝑢𝑖, 𝑣𝑖) region Ridge 

regression parameter values are obtained by correlating the eigenvalues and conditional number (c) 

obtained from multiplying the 𝑿𝑻𝑾(𝑢𝑖 , 𝑣𝑖)𝑿 matrix.  The conditional number (c) is obtained from 

dividing the largest eigenvalue by the smallest eigenvalue.  According to [16], multicollinearity can be 

detected if the value of the conditional number (c) is greater than 30. When the value of the conditional 

number (c) obtained is greater than 30, it forces the Locally Compensated (LC) condition value not to 

exceed the same threshold, so follow the convention and determine the threshold of 30 [4]. 

 

In the LCR-GWR method, there is hypothesis testing which aims to see which parameters have a 

significant influence on the response variable. The parameter significance test in LCR-GWR is written in 

the following formula: 
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𝑡𝑐𝑜𝑢𝑛𝑡 =
�̂�𝑘(𝑢𝑖, 𝑣𝑖, 𝜆𝑖)

𝑆𝐸[�̂�𝑘(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖)]
 

 

With SE is the Standard Error of �̂�𝑘(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) and the decision criterion is to reject 𝐻0 if |𝑡𝑐𝑜𝑢𝑛𝑡| >

𝑡𝛼
2⁄ (𝑛−𝑝−1)

 or if the p-value < 0.05. 

 

2.3 Geographically Weighted Lasso (GWL) 

The second concept in dealing with multicollinearity is the LASSO method.  LASSO is a method to shrink 

highly correlated and insignificant coefficients to zero first proposed by [17].  Like Ridge regression which 

causes the coefficients to shrink towards zero.  However, in LASSO some coefficients shrink to zero [18].  

The estimation in the LASSO method is formulated as follows: 

 

�̂�𝐿 =
arg𝑚𝑖𝑛
𝛽

{∑(𝑦𝑖 − 𝛽0 −∑𝑋𝑖𝑘𝛽𝑘

𝑝

𝑘=1

)

2𝑛

𝑖=1

+ 𝜆∑|𝛽𝑘

𝑝

𝑘=1

|} 

 

The application of the LASSO method to overcome local multicollinearity and spatial heterogeneity in 

GWR models is the Geographically Weighted Lasso (GWL) method.  The estimation of the GWL model 

is formulated as follows: 

 

�̂�𝐿 =
arg𝑚𝑖𝑛
𝛽

{∑(𝑦𝑖 − 𝛽0(𝑢𝑖, 𝑣𝑖) −∑𝑋𝑖𝑘𝛽𝑘

𝑝

𝑘=1

(𝑢𝑖, 𝑣𝑖))

2
𝑛

𝑖=1

+ 𝜆∑|𝛽𝑘

𝑝

𝑘=1

(𝑢𝑖, 𝑣𝑖)|} 

 

With the constraint ∑ |𝛽𝑘
𝑝
𝑘=1 (𝑢𝑖, 𝑣𝑖)| ≤ 𝑡 which must be weighted at each location so that the shrinkage 

parameter will be different for each location [6].  The steps in estimating the GWL model are as follows: 

1. Calculating the optimum bandwidth value with the CV method 

2. By using the optimum bandwidth obtained, then calculate the weight matrix 𝑾 which is n×n with 

an exponential function. 

3. At each location 𝑖 = 1, 2, 3, … , 𝑛 

a) Calculate 𝑾
𝟏

𝟐(𝑖) = 𝑠𝑞𝑟𝑡 (𝑑𝑖𝑎𝑔(𝑾(𝑖))) 

b) Calculate 𝑿𝑊 = 𝑾
𝟏

𝟐(𝑖)𝑿 and 𝒚𝑊 = 𝑾
𝟏

𝟐(𝑖)𝒚 using the root of the weight 𝑾(𝑖) at each 𝑖𝑡ℎ location. 

c) Determine the solution of LASSO corresponding to the CV based on the value of t at each 𝑖𝑡ℎ 

location with the LARS algorithm. 
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The value of parameter t at each 𝑖𝑡ℎ location (𝑡𝑖) is calculated with the following formula: 

 

𝑡𝑖 =
∑ |�̂�𝑘
𝑝
𝑘=1 (𝑢𝑖 , 𝑣𝑖)|

∑ |�̂�𝑘
𝑂𝐿𝑆|

𝑝
𝑘=1

 

 

3. METHODOLOGY 

Data used in this study is the United States Income data in 2022 obtained from the Bureau of Economic 

Analysis U.S. Department of Analysis (https://www.bea.gov/).  The sample amounted to 51 observations 

with 9 predictor variables, namely Gross Domestic Product (𝑥1), Personal Consumption Expenditures 

(𝑥2), Population Total (𝑥3), Labor Force Participation Not Seasonally (𝑥4), Population Density (𝑥5), 

Labor Force Participation Seasonally (𝑥6), High School Graduate Rate (𝑥7), Bachelor Degree Rate(𝑥8), 

and Associate Degree Rate (𝑥9). First descriptive statistical analysis was performed on the data. and 

multicollinearity test by calculating the Variance Inflation Factor (VIF). Furthermore, Moran's Index is 

calculated to conduct spatial dependency test with Z test while spatial heterogeneity test with Breusch-

Pagan test.  After it is found that the data has spatial heterogeneity, the data is analyzed using GWR, LCR-

GWR, and GWL methods. To measure the best model, it is seen from the smallest Root Mean Squared 

Error (RMSE) and Akaike Information Criterion Score (AIC) values.  The AIC and RMSE values are 

calculated with the following formula: 

 

𝐴𝐼𝐶 = 2𝑘 + 𝑛 ln (
𝑆𝑆𝐸

𝑛
) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
 

 

4. RESULT AND DISCUSSION 

Descriptive statistical analysis of the United States income data is presented in Table 1 below. 
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Table 1 Descriptive Statistic 

 

Variable Minimum Maximum Means 

Standard 

Deviation 

𝑌 46370 95970 63886 9701,527 

𝑋1 40,62 3598,04 496,18 643,488 

𝑋2 39678 85723 517288 7547,836 

𝑋3 0,580 39,030 6,533 7,42433 

𝑋4 54,80 71,10 63,06 4,0187 

𝑋5 1,30 10332,90 408,51 1444,171 

𝑋6 54,70 71,10 62,72 3,9484 

𝑋7 15,50 40,10 27,53 4,2286 

𝑋8 13,0 26,7 20,3 3,0068 

𝑋9 3,0 14,10 9,057 1,7286 

 

Table 1 above show that Income in the United States has a minimum value of 46370 and a maximum of 

95970 with an average of 63886.  The Associate Degree Rate (𝑥8) has the smallest standard deviation 

compared to other variables.  This shows that the population has a bachelor's degree that is fairly evenly 

distributed between regions in the United States. 

 

Furthermore, to check for multicollinearity in the United States Income data in 2022 is done using the VIF 

value.  A VIF value greater than 10 indicates multicollinearity. The VIF value on the Income data can be 

seen in table 2 below 

 

Table 2 VIF Value 

 

Variable VIF 

𝑋1 36,5988 

𝑋2 6,72749 

𝑋3 34,7723 

𝑋4 228,5206 

𝑋5 4,4890 

𝑋6 220,9434 

𝑋7 3,0304 

𝑋8 5,7613 
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𝑋9 1,9127 

 

Table 2 above shows that some independent variables contain multicollinearity, which has a VIF value> 

10 is the variable 𝑋1, 𝑋3, 𝑋4, and 𝑋6.  While the other independent variables have a VIF value < 10. To 

ensure this, the correlation calculation between the independent variables is also carried out and the results 

are as follows: 

 

Table 3 Correlation between Predictor Variables 

 

 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 

𝑋1 1 0,1847 0,9810 

-

0,0714 

-

0,0368 

-

0,0531 

-

0,2955 

-

0,1898 0,1534 

𝑋2 0,1847 1 0,0999 0,5135 0,7072 0,5017 

-

0,6070 

-

0,3717 0,7023 

𝑋3 0,9810 0,0999 1 

-

0,1337 

-

0,0787 

-

0,1131 

-

0,2269 

-

0,1762 0,0852 

𝑋4 

-

0,0714 0,5135 

-

0,1337 1 0,2880 0,9962 

-

0,5523 0,1429 0,7540 

𝑋5 

-

0,0368 0,7072 

-

0,0787 0,2880 1 0,3051 

-

0,4229 

-

0,5625 0,3026 

𝑋6 

-

0,0531 0,5017 

-

0,1131 0,9962 0,3051 1 

-

0,5669 0,1216 0,7473 

𝑋7 

-

0,2955 

-

0,6070 

-

0,2269 

-

0,5523 

-

0,4229 

-

0,5669 1 0,1422 

-

0,7428 

𝑋8 

-

0,1898 

-

0,3717 

-

0,1762 0,1429 

-

0,5625 0,1216 0,1422 1 

-

0,0273 

𝑋9 0,1534 0,7023 0,0852 0,7540 0,3026 0,7473 

-

0,7428 

-

0,0273 1 

 

From Table 3 it can be seen that there is a positive correlation between variables 𝑋1 and 𝑋3 with a 

correlation value of 0,9810, variables 𝑋2 and 𝑋5 with a correlation value of 0,7072, variables 𝑋2 and 𝑋9 

with a correlation value of 0,7023, variables 𝑋4 and 𝑋6 with a correlation value of 0,9962, variable 𝑋4 and 

𝑋9 with a correlation value of 0,7540, variables 𝑋6 and 𝑋9 with a correlation value of 0,7473, and negative 

correlation between variables 𝑋7 and 𝑋9 with a correlation value of -0,7428. 
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Next is to test spatial dependence and spatial heterogeneity in the Income data. Spatial dependence is 

tested with the Z test which is based on the value of the Moran Index (H0: There is no spatial dependence 

vs H1: There is spatial dependence) with a significance level of 5% so that Ztable = 1.96 is obtained and the 

results can be seen in table 4. 

 

Table 4 Spatial Dependency Test 

 

Moran's I 𝐸(𝐼) 𝑉𝑎𝑟(𝐼) Zcount 

0,4328 -0,0200 0,0286 2,6242 

 

The Zcount is = 2,6242 > 1,96, therefore 𝐻0 is rejected.  It can be concluded that there is no spatial 

dependence, which means that the income value in one observation area not depends or is influenced by 

other observation areas. 

 

After the spatial dependency test is carried out, spatial heterogeneity was tested using the Breusch-Pagan 

test statistic (H0: There is no spatial heterogeneity vs H1: There is spatial heterogeneity).  The results of 

the analysis are presented in the table below: 

 

Table 5 Spatial Heterogeneity Test 

 

Breusch-

Pagan 

DF p-value 𝜒(0,05;9)
2  

16,954 9 0,04944 16,919 

 

The Breusch-Pagan value in tables is 16.954 which greater than 𝜒(0,05;9)
2 =16,919 with a p-value of 

0.04944, hence 𝐻0 is rejected and it can be concluded that there is an effect of spatial heterogeneity in 

each observation location at a real level of 0.05.  If the analysis using OLS is still applied to the data, the 

estimation results obtained will have a large variety of parameter estimates. 

 

Breusch-Pagan test also given an information that there is spatial diversity in Income data, namely the 

variety that is not homogeneous between observation locations.  Due to spatial diversity, a model that can 

overcome spatial diversity is needed, namely by forming a regression model at each observation location.  

The bandwidth used in this GWR model is 2,558.  Next is to form the weight matrix obtained for all 

observation locations.  The weight matrix for all Income data locations is a follow: 
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(

 
 

1 1,81𝑒 − 07 ⋯ 0,0003 0,0663
1,81𝑒 − 07 1 ⋯ 0,0001 1,65𝑒 − 06

⋮ ⋮ ⋱ ⋮ ⋮
0,0003 0,0001 ⋯ 1 0,0042
0,0663 1,65𝑒 − 06 ⋯ 0,0042 1 )

 
 

 

 

Fitted model test in GWR is presented in the following table: 

 

Table 6 Fitted Model Test 

 

Model DF F p-value 

GWR 27 1,8290 0,03249 

 

The value of Fcount = 1.8290 > Ftable = 1.8292 and p-value = 0.03249 < 0.05 so that 𝐻0is rejected.  So, it 

can be concluded that there is a significant difference between the global regression model and the GWR 

model. 

 

The presence of multicollinearity can cause the parameter estimation results to have a large variance, 

which can lead to errors in model interpretation. In addition, unaddressed multicollinearity will result in 

unstable model estimates.  Therefore, to overcome the multicollinearity, the LCR-GWR and GWL 

methods are used. In the LCR-GWR model, the value of the ridge coefficient is determined from the 

conditional number (c) value obtained.  In the Income data used, after calculating the multiplication of the 

𝑿𝑻𝑾(𝑢i, 𝑣i)𝑿 matrix, the c value is more than 30, which means that the data is detected to contain 

multicollinearity.  In GWL modelling, based on the concept of LASSO, some coefficients in the GWL 

model shrink to zero in some observation locations, which makes the variable insignificant to the model.  

Modelling with GWL also occurs variable selection process.  Modelling results using GWL with all 

predictor variables have an influence that varies between negative and positive in some observation areas. 

 

The following is an example of the results of parameter estimation and parameter significance testing in 

District of Columbia: 
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Table 7 LCR-GWR and GWL Model Parameter Significance Test 

 

Parameters 
LCR-GWR GWL 

Estimation Decision Estimation Decision 

�̂�1 0,285448 𝐻0 rejected 0,068131 𝐻0 rejected 

�̂�2 0,902948 𝐻0 rejected 0,324291 𝐻0 rejected 

�̂�3 -0,120542 𝐻0 rejected 0 𝐻0 accepted 

�̂�4 0,040305 𝐻0 accepted 0,245935 𝐻0 rejected 

�̂�5 -0,389905 𝐻0 rejected 0 𝐻0 accepted 

�̂�6 0,271407 𝐻0 rejected 0 𝐻0 accepted 

�̂�7 -0,180173 𝐻0 rejected 0 𝐻0 accepted 

�̂�8 -0,109396 𝐻0 rejected 0,328402 𝐻0 rejected 

�̂�9 -0,283906 𝐻0 rejected -0,234351 𝐻0 rejected 

 

Table 7 shows that in the analysis of Income data using LCR-GWR, the independent variables that affect 

the response variable in the District of Columbia are Gross Domestic Product (𝑋1), Personal Consumption 

Expenditures (𝑋2), Population Total (𝑋3), Population Density (𝑋5), Labor Force Participation Seasonally 

(𝑋6), High School Graduate Rate (𝑋7), Bachelor Degree Rate(𝑋8), and Assosiate Degree Rate (𝑋9). 

because they have a p-value <0.05. 

 

Whereas in the Income data analysis using GWL, a value of 0 indicates that the predictor variable is not 

significant at that observation location.  Therefore, District of Columbia has factors that affect income 

including Gross Domestic Product (𝑋1), Personal Consumption Expenditures (𝑋2), Labor Force 

Participation Not Seasonally (𝑋4), Bachelor Degree Rate (𝑋8), Associate Degree Rate and (𝑋9) 

 

After analyzing the data using LCR-GWR and GWL, the next step is to evaluate the model with AIC and 

RMSE values to see which model is able to provide a better solution if multicollinearity can be overcome.  

The RMSE and AIC values for LCR-GWR and GWL models are displayed in the Table 8. 

 

Table 8 AIC and RMSE Values 

 

Model LCR-GWR GWL 

AIC -206.492 -308,141 

RMSE 0,1107 0,0401 
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It is clear that AIC and RMSE values for LCR-GWR and GWL are different. AIC and RMSE value of 

GWL is lower than LCR-GWR. It indicates that GWL model provides better solution for controlling 

multicollinearity in spatial data. 

 

5. CONCLUSION 

From the result of controlling spatial heterogeneity using GWR and controlling multicollinearity using 

LCR-GWR and GWL in Unites States Income data in 2022, we can conclude that GWR can overcome 

spatial heterogeneity while LCR-GWR and GWL can overcome multicollinearity in spatial data. When 

comparing LCR-GWR dan GWL using AIC and RMSE value it is found that GWL is better than LCR-

GWR in overcoming the multicollinearity in spatial. It is indicated by the lower of AIC and RMSE value 

in GWL.  

 

REFERENCES 

[1] Anselin, L. Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, 

Netherlands,1998. 

[2] Lutfiani, N., Sugiman, & Mariani, S. “Pemodelan Geographically Weighted Regression (GWR) 

dengan Fungsi Pembobot Kernel Gaussian dan Bi-Square,” UNNES Journal of Mathematics,VIII (1), 

pp. 82-91, 2017. 

[3] Klar, R. G. Geographically Weighted Regression based Investigation of Transport Policies for 

Increased Public Transport Ridership A Case Study of Stockholm. Stocholm, Sweden, 2021. 

[4] Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. “GWmodel: an R Package for Exploring 

Spatial Heterogeneity using Geographically Weighted Models,” Journal of Statistical Software, LXII 

(17), pp. 1-50, 2014. 

[5] Wheeler, D.C. “Simultaneous Coefficient Penalization and Model Selection in Geographically 

Weighted Regression: The Geographically Weighted Lasso,” Journal of Environment and Planning 

A, XLI (3), pp. 722-742, 2009. 

[6] Yulita, T. “Pemodelan Geographically Weighted Ridge Regression dan Geographically Weighted 

Lasso pada Data Spasial dengan Multikolinieritas,” Thesis, Sekolah Pascasarjana, Institut Pertanian 

Bogor, Bogor, 2016. 

[7] Fadliana, A., Pramoedyo, H., & Fitriani, R. “Implementation of Locally Compensated Ridge-

Geographically Weighted Regression Model in Spatial Data with Multicollinearity Problems (Case 

Study: Stunting among Children Aged under Five Years in East Nusa Tenggara Province),” Media 

Statistika, XIII (2), pp. 125-135, 2020. 

[8] Setiyorini, A., Suprijadi, J., & Handoko, B. “Implementations of Geographically Weighted Lasso in 

Spatial Data with Multicollinearity (Case Study: Poverty modeling of Java Island),” AIP Conference 

Proceedings, pp. 1-14, 2017. 



             International Journal of Applied Science and Engineering Review 

 

ISSN: 2582-6271 
 

Vol. 5, Issue.2, March-April 2024, page no. 36-50 

 

https://ijaser.org Page 50 

 

[9] Amin, C., Sari, D. N., Priyono, K. D., & Hidayah, B. “The Spatial Pattern of COVID-19 Incidence in 

Relation to Poverty Across Central Java Province,” Proceedings of the International Conference of 

Geography and Disaster Management (ICGDM 2022), pp. 450-463, 2023 

[10] Nadya, M. “Analisis Geographically Weighted Regression (GWR) pada Kasus Pneumonia Balita di 

Provinsi Jawa Barat,” Skripsi, Universitas Negeri Jakarta, Jakarta, 2017. 

[11] Fotheringham, A. S., Brunsdon, C., & Charlton, M. “Geographically Weighted Regression: The 

Analysis of Spatially Varying Relationship,” John Wiley & Sons, Hoboken, 2002. 

[12] Fadhilah, N. “Geographically Weighted Regression dan Spatial Pattern Analysis untuk Pemodelan 

Kejadian Penyakit Malaria dan Faktor yang Mempengaruhi di Provinsi Papua,” Skripsi, Institut 

Teknologi Sepuluh Nopember, Surabaya, 2015. 

[13] Leung, Y., Mei, C. L., & Zhang, W. X. “Statistical Tests for Spatial Nonstationarity Based on The 

Geographically Weighted Regression Model,” Journal of Environment and Planning A, XXXII, pp. 

9-32, 2000. 

[14] Putra, R., Tyas, S. W., & Fadhlurrahman, M. G. “Geographically Weighted Regression with The Best 

Kernel Function on Open Unemployment Rate Data in East Java Province,” Enthusiastic International 

Journal of Statistics and Data Science, II (1), pp. 26-36, 2022. 

[15] Ali, R.G. & Nugraha, J. “Penerapan Metode Regresi Ridge dalam Mengatasi Masalah 

Multikolinearitas pada Kasus Indeks Pembangunan Manusia di Indonesia Tahun 2017,” Prosiding 

Sendika. pp. 239-248, 2019. 

[16] Hocking, R. R. “Methods and Applications of Linear Models,” John Wiley & Sons, New York, 2003. 

[17] Tibshirani, R. “Regression Shrinkage and Selection Via the Lasso,” Journal of the Royal Statistical 

Society: Series B (Methodological), LVIII (1), pp. 267-288, 1996. 

[18] Herawati, N., Nisa, K., Setiawan, E., Nusyirwan, & Tiryono. “Regularized Multiple Regression 

Methods to Deal with Severe Multicollinearity,” International Journal of Statistics and Applications, 

VIII (4), pp. 167-172, 2018. 

 


